Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications

نویسندگان

  • Kanghyun Nam
  • Kwanghyun Cho
  • Sang-Shin Park
  • Seibum Choi
چکیده

This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benefits of the Electromagnetic Actuated Valve Train in Gasoline Engine Application

Engines equipped with camless valve trains will have greater space for performance optimization. In this paper, based on the electromagnetic actuated valve train system, one-dimensional and three-dimensional simulation models on engine thermodynamic cycle and in-cylinder charge motion are established, respectively. With the application of early-intake-valve closing (EIVC) strategy,unthrottled l...

متن کامل

Research of Intake Valve Deactivation on Engine Performance

In this paper, the effect of the Intake Valve Deactivation (IVDA) on engine performance is investigated in detail. Based on an optimization platform with Genetic Algorithm (GA) and engine thermodynamic model, the characteristics of the engine volumetric efficiency and pumping loss were studied under the cam-drive, Single Intake Valve (SIV) and Dual Intake Valves (DIV) operating modes, and the e...

متن کامل

Fault Detection Based on Type 2 Fuzzy system for Single-Rod Electrohydraulic Actuator

Electro-hydraulic systems with regards to the their specific features and applications among other industrial systems including mechanical, electrical and pneumatic systems, have been widely taken into consideration by the scientists and researchers. Due to the fact that the electro-hydraulic system is inherently a nonlinear system, has some problems such as signals saturation, nonlinear effici...

متن کامل

A Cascade PID-PD Controller for a Hybrid Piezo-Hydraulic Actuator in Camless Internal Combustion Engines

This paper deals with a hybrid actuator composed by a piezo and a hydraulic part and with a cascade PID-PD control structure for camless engine motor applications. The idea is to use the advantages of both, the high precision of the piezo and the force of the hydraulic part. In fact, piezoelectric actuators (PEAs) are commonly used for precision positionings, despite PEAs present nonlinearities...

متن کامل

Control of Camless Intake Process Part II

A model based control scheme is designed to regu late the cylinder air charge of a camless multicylinder engine for unthrottled operation The controller con sists of a feedforward and an adaptive feedback scheme based on a control oriented model of the breathing process of an engine equipped with electro hydraulic springless valve train The nonlinear control scheme is designed to achieve cylind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017